SPSS分析技术:探索性分析;强大的综合性描述性统计模块
SPSS还提供了一种综合性的数据描述工具:探索性分析,它能够一次性将上述分析结果和其它更详细的分析结果呈现出来,不能能够输出数据结果,还能提供各种直观统计图。
探索性分析
生活中,高空作业一般都会借助外物如吊车等工具帮住自己达到目标,而统计学中也一样,在对数据的基本特征有所了解,需要对数据进行更为细致和深入的描述性观察分析,这时候就需要绘制统计图来辅助分析,这样就使得数据分析更为深入、细致和全面。
探索性分析项目
描述性统计结果。输出各种描述性统计指标,例如,均值、方差、标准差等。
正态分布检验。通过对数据的进一步探索分析,验证其是否符合正态分布,进而确定能否使用正态分布数据的分析方法进行分析。常用的正态分布验证是Q-Q概率图。
方差齐性检验。通过Levene检验比较各组数据之间的方差是否相等,以此判断数据的离散程度是否存在差异。若Levene检验得到的显著性水平小于0.05,就拒绝方差相同的假设。
寻找数据中的奇异值。在数据整理输入过程中,对出现某些影响分析结果的奇异值进行删除或保留。
探究性分析结果的图形描述
探究性分析增加了图形的方式对数据的分布给予直观呈现。图形包括茎叶图、直方图、箱图和Q-Q概率图。茎叶图:是用以描述连续变量的一种手法,主要包括频率、茎和叶三个部分。其中,茎和叶分布代表数据的整数部分和小数部分。茎代表观测值的十位数,叶对应观测值的个位数。一个个位数代表一个观测值,每一行左边的频率就是该行对应的个案数。每个茎叶图的底部还注明了茎宽和每叶代表的个案数。数据的值即为茎叶组成的数值结合乘以茎宽。茎叶图既保留了数据的频率分布,也保存了原始数据,是探究性分析常用方法之一。
直方图:用于对连续变量数据的观察。它是以区间作为水平轴,以各个区间的频率作为相应条块的高度来绘制出统计图。从直方图上可以直观看出数据的分布状况等。
箱图:是表现五数(最小值、最大值、中位数、第一个四分位数、第三个四分位数)的图形形式,其中矩形为箱图的主题,两个四分位数之差为箱长,也称内四分位限。箱体部分包含全体数据约50%的数值,箱体的上中下三条平行线分别表示75%、50%(中位数)和25%分位数。纵贯箱体中间的竖线称为触须线,触须线上下两端的横线代表该组变量数值的最大值(97.5%)和最小值(2.5%)。箱图在比较两个或多个变量时尤其有用,它还可用于判别极端值的存在。如果箱图中有异常值,用【。】表示,如果有极端异常值,则用【*】表示。
案例分析
现有某校451名学生的体检数据,测量了身高、体重、肺活量、血压、心率等指标。对所有学生的身高数据进行探索性分析,进一步了解该校学生的身高情况。
分析步骤
1、选择菜单【分析】-【描述统计】-【探索】。将变量身高选入因变量列表;将性别选入因子列表;将编号变量选入标注个案。
因变量指待分析的数据变量;
因子列表指分类变量,即按照因子变量对因变量进行分类;
标注个案指对异常值的标注信息;
本案例将身高变量选为因变量,即待分析数据变量;将年龄变量选为因子变量,即按照年龄对身高数据进行分类;标注个案选择编号变量,在统计图上,异常值将标注其编号。
2、统计指标及统计图选择。
为了展示探索性分析的所有功能,我们将所有的统计指标及统计图类型都进行勾选。其它的选项比较简单,这里需要对伸展与级别Levene检验进行说明。
3、点击【继续】,然后点击【确定】,输出结果。
结果解读
1、个案处理摘要;从下表可以知道每个年龄的有效个案数、缺失个案数和总计个案数。
2、描述统计摘要表;由于年龄跨度较大,所以在这里只展示10岁的学生数据。包括了所有的描述性统计指标。
3、M-估计值;
当数据中存在极端值和奇异值时,M估计值是更好的平均值和中位数的替代者,能够更好的反映数据的集中程度。M估计采取的办法是给每个个案数值增加权重,这样能够有效的减少极端值和异常值对平均值和中位数的影响,从而让分析者更好的了解手中的数据。表中有四个M估计值,它们的区别在于权重不同。如果描述统计中,平均值和中位数与M估计表的有很大出入,说明原始数据中存在极端值。
4、百分位数;表中显示每个年龄数据的不同百分位的身高。
5、正态分布检验结果;探索性分析采用了两种正态分布检验方法:K-S检验和S-W检验。
结果展示了每个年龄学生的身高是否服从正态分布。
6、各种统计图形,这里以10岁学生群体的统计图为例。输出结果中包括了直方图、茎叶图、Q-Q图、去势Q-Q图以及箱图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26